package asai

  1. Overview
  2. Docs
module Message : Message

Sending Messages

val emit : ?severity:Diagnostic.severity -> ?loc:Range.t -> ?text:Diagnostic.text -> ?backtrace:Diagnostic.backtrace -> ?extra_remarks:Diagnostic.loctext list -> Message.t -> unit

emit message emits the message and continues the computation.

Example:

Reporter.emit @@ TypeError (tm, ty)
  • parameter severity

    The severity (to overwrite the default severity inferred from the message).

  • parameter loc

    The location of the text (usually the code) to highlight.

  • parameter text

    The text (to overwrite the default text inferred from the message msg).

  • parameter backtrace

    The backtrace (to overwrite the accumulative frames up to this point).

  • parameter extra_remarks

    Additional remarks that are not part of the backtrace.

val emit_diagnostic : Message.t Diagnostic.t -> unit

Emit a diagnostic and continue the computation.

val fatal : ?severity:Diagnostic.severity -> ?loc:Range.t -> ?text:Diagnostic.text -> ?backtrace:Diagnostic.backtrace -> ?extra_remarks:Diagnostic.loctext list -> Message.t -> 'a

fatal message aborts the current computation with the message.

Example:

Reporter.fatal @@ CatError "forgot to feed the cat"
  • parameter severity

    The severity (to overwrite the default severity inferred from the message).

  • parameter loc

    The location of the text (usually the code) to highlight.

  • parameter text

    The text (to overwrite the default text inferred from the message).

  • parameter backtrace

    The backtrace (to overwrite the accumulative frames up to this point).

  • parameter extra_remarks

    Additional remarks that are not part of the backtrace.

val fatal_diagnostic : Message.t Diagnostic.t -> 'a

Abort the computation with a diagnostic.

Backtraces

val get_backtrace : unit -> Diagnostic.backtrace

get_backtrace() returns the current backtrace.

val with_backtrace : Diagnostic.backtrace -> (unit -> 'a) -> 'a

with_backtrace bt f runs the thunk f with bt as the initial backtrace.

Example:

(* running code with a fresh backtrace *)
with_backtrace Emp @@ fun () -> ...
val trace : ?loc:Range.t -> string -> (unit -> 'a) -> 'a

trace str f records the string str and runs the thunk f with the new backtrace.

  • parameter loc

    The location of the text (usually the code) to highlight.

val tracef : ?loc:Range.t -> ('a, Format.formatter, unit, (unit -> 'b) -> 'b) format4 -> 'a

tracef format ... f formats and records a frame in the backtrace, and runs the thunk f with the new backtrace. Note that there should not be any literal control characters. See Diagnostic.text.

  • parameter loc

    The location of the text (usually the code) to highlight.

val trace_text : ?loc:Range.t -> Diagnostic.text -> (unit -> 'a) -> 'a

trace_text text f records the text and runs the thunk f with the new backtrace.

  • parameter loc

    The location of the text (usually the code) to highlight.

val trace_loctext : Diagnostic.loctext -> (unit -> 'a) -> 'a

trace_loctext loctext f records the loctext and runs the thunk f with the new backtrace.

Locations

val get_loc : unit -> Range.t option

get_loc() returns the current location.

val with_loc : Range.t option -> (unit -> 'a) -> 'a

with_loc loc f runs the thunk f with loc as the initial location loc. Note that with_loc None will clear the current location, while merge_loc None will keep it. See merge_loc.

val merge_loc : Range.t option -> (unit -> 'a) -> 'a

merge_loc loc f "merges" loc into the current location and runs the thunk f. By "merge", it means that if loc is None, then the current location is kept; otherwise, it is overwritten. Note that with_loc None will clear the current location, while merge_loc None will keep it. See with_loc.

Constructing Diagnostics

Functions in this section differ from the ones in Diagnostic (for example, Diagnostic.make) in that they fill out the current location, the current backtrace, and the severity automatically. (One can still overwrite them with optional arguments.)

val diagnostic : ?severity:Diagnostic.severity -> ?loc:Range.t -> ?text:Diagnostic.text -> ?backtrace:Diagnostic.backtrace -> ?extra_remarks:Diagnostic.loctext list -> Message.t -> Message.t Diagnostic.t

diagnostic message constructs a diagnostic with the message along with the backtrace frames recorded via trace.

Example:

Reporter.diagnostic @@ SyntaxError "too many emojis"
  • parameter severity

    The severity (to overwrite the default severity inferred from the message).

  • parameter loc

    The location of the text (usually the code) to highlight.

  • parameter text

    The text (to overwrite the default text inferred from the message).

  • parameter backtrace

    The backtrace (to overwrite the accumulative frames up to this point).

  • parameter extra_remarks

    Additional remarks that are not part of the backtrace.

Algebraic Effects

val run : ?init_loc:Range.t -> ?init_backtrace:Diagnostic.backtrace -> emit:(Message.t Diagnostic.t -> unit) -> fatal:(Message.t Diagnostic.t -> 'a) -> (unit -> 'a) -> 'a

run ~emit ~fatal f runs the thunk f, using emit to handle non-fatal diagnostics before continuing the computation (see emit), and fatal to handle fatal diagnostics that have aborted the computation (see fatal).

  • parameter init_backtrace

    The initial backtrace to start with. The default value is the empty backtrace.

  • parameter emit

    The handler of non-fatal diagnostics.

  • parameter fatal

    The handler of fatal diagnostics.

val adopt : ('message Diagnostic.t -> Message.t Diagnostic.t) -> (?init_loc:Range.t -> ?init_backtrace:Diagnostic.backtrace -> emit:('message Diagnostic.t -> unit) -> fatal:('message Diagnostic.t -> 'a) -> (unit -> 'a) -> 'a) -> (unit -> 'a) -> 'a

adopt m run f runs the thunk f that uses a different Reporter instance. It takes the runner run from that Reporter instance as an argument to handle effects, and will use m to transform diagnostics generated by f into ones in the current Reporter instance. The backtrace within f will include the backtrace that leads to adopt, and the innermost specified location will be carried over, too. The intended use case is to integrate diagnostics from a library into those in the main application.

adopt is a convenience function that can be implemented as follows:

let adopt m f run =
  run
    ?init_loc:(get_loc())
    ?init_backtrace:(Some (get_backtrace()))
    ~emit:(fun d -> emit_diagnostic (m d))
    ~fatal:(fun d -> fatal_diagnostic (m d))
    f

Here shows the intended usage, where Lib is the library to be used in the main application:

module LibReporter = Lib.Reporter

let _ = Reporter.adopt (Diagnostic.map message_mapper) LibReporter.run @@ fun () -> ...
val try_with : ?emit:(Message.t Diagnostic.t -> unit) -> ?fatal:(Message.t Diagnostic.t -> 'a) -> (unit -> 'a) -> 'a

try_with ~emit ~fatal f runs the thunk f, using emit to intercept non-fatal diagnostics before continuing the computation (see emit), and fatal to intercept fatal diagnostics that have aborted the computation (see fatal). The default interceptors re-emit or re-raise the intercepted diagnostics.

  • parameter emit

    The interceptor of non-fatal diagnostics. The default value is emit_diagnostic.

  • parameter fatal

    The interceptor of fatal diagnostics. The default value is fatal_diagnostic.

val map_diagnostic : (Message.t Diagnostic.t -> Message.t Diagnostic.t) -> (unit -> 'a) -> 'a

map_diagnostic m f runs the thunk f and applies m to any diagnostic sent by f. It is a convenience function that can be implemented as follows:

let map_diagnostic m f =
  try_with
    ~fatal:(fun d -> fatal_diagnostic (m d))
    ~emit:(fun d -> emit_diagnostic (m d))
    f
  • since 0.2.0

Debugging

val register_printer : ([ `Trace | `Emit of Message.t Diagnostic.t | `Fatal of Message.t Diagnostic.t ] -> string option) -> unit

register_printer p registers a printer p via Printexc.register_printer to convert unhandled internal effects and exceptions into strings for the OCaml runtime system to display. Ideally, all internal effects and exceptions should have been handled by run and there is no need to use this function, but when it is not the case, this function can be helpful for debugging. The functor Reporter.Make always registers a simple printer to suggest using run, but you can register new ones to override it. The return type of the printer p should return Some s where s is the resulting string, or None if it chooses not to convert a particular effect or exception. The registered printers are tried in reverse order until one of them returns Some s for some s; that is, the last registered printer is tried first. Note that this function is a wrapper of Printexc.register_printer and all the registered printers (via this function or Printexc.register_printer) are put into the same list.

The input type of the printer p is a variant representation of all internal effects and exceptions used in this module:

  • `Trace corresponds to the effect triggered by trace; and
  • `Emit diag corresponds to the effect triggered by emit; and
  • `Fatal diag corresponds to the exception triggered by fatal.

Note: Diagnostic.string_of_text can be handy for converting a text into a string.

OCaml

Innovation. Community. Security.