bap-core-theory
Legend:
Library
Module
Module type
Parameter
Class
Class type

The Theory of Transcendental Functions.

`val exp : rmode -> 'f float -> 'f float`

`exp m x` is the floating point number closes to `e^x`,

where `b^a` is `b` raised to the power of `a` and `e` is the base of natural logarithm.

`val expm1 : rmode -> 'f float -> 'f float`

`expm1 m x` is the floating point number closes to `e^x - 1`,

where `b^a` is `b` raised to the power of `a` and `e` is the base of natural logarithm.

`val exp2 : rmode -> 'f float -> 'f float`

`exp2 m x` is the floating point number closes to `2^x`,

where `b^a` is `b` raised to the power of `a`.

`val exp2m1 : rmode -> 'f float -> 'f float`

`exp2 m x` is the floating point number closes to `2^x - 1`,

where `b^a` is `b` raised to the power of `a`.

`val exp10 : rmode -> 'f float -> 'f float`

`exp10 m x` is the floating point number closes to `10^x`,

where `b^a` is `b` raised to the power of `a`.

`val exp10m1 : rmode -> 'f float -> 'f float`

`exp10m1 m x` is the floating point number closes to `10^x - 1`,

where `b^a` is `b` raised to the power of `a`.

`val log : rmode -> 'f float -> 'f float`

`log m x` is the floating point number closest to `log x`.

`val log2 : rmode -> 'f float -> 'f float`

`log2 m x` is the floating point number closest to `log x / log 2`.

`val log10 : rmode -> 'f float -> 'f float`

`log10 m x` is the floating point number closest to `log x / log 10`.

`val logp1 : rmode -> 'f float -> 'f float`

`logp1 m x` is the floating point number closest to `log (1+x)`.

`val log2p1 : rmode -> 'f float -> 'f float`

`logp1 m x` is the floating point number closest to `log (1+x) / log 2`.

`val log10p1 : rmode -> 'f float -> 'f float`

`logp1 m x` is the floating point number closest to `log (1+x) / log 10`.

`val sin : rmode -> 'f float -> 'f float`

`sin m x` is the floating point number closest to `sin x`.

`val cos : rmode -> 'f float -> 'f float`

`cos m x` is the floating point number closest to `cos x`.

`val tan : rmode -> 'f float -> 'f float`

`tan m x` is the floating point number closest to `tan x`.

`val sinpi : rmode -> 'f float -> 'f float`

`sinpi m x` is the floating point number closest to `sin (pi*x)`.

`val cospi : rmode -> 'f float -> 'f float`

`cospi m x` is the floating point number closest to `cos (pi*x)`.

`val atanpi : rmode -> 'f float -> 'f float`

`atanpi m y x` is the floating point number closest to `atan(y/x) / pi`.

`val atan2pi : rmode -> 'f float -> 'f float -> 'f float`

`atanpi m y x` is the floating point number closest to `atan(y/x) / (2*pi)`.

`val asin : rmode -> 'f float -> 'f float`

`asin m x` is the floating point number closest to `asin x`.

`val acos : rmode -> 'f float -> 'f float`

`acos m x` is the floating point number closest to `acos x`.

`val atan : rmode -> 'f float -> 'f float`

`atan m x` is the floating point number closest to `atan x`.

`val atan2 : rmode -> 'f float -> 'f float -> 'f float`

`atan2 m y x` is the floating point number closest to `atan (y/x)`.

`val sinh : rmode -> 'f float -> 'f float`

`sinh m x` is the floating point number closest to `sinh x`.

`val cosh : rmode -> 'f float -> 'f float`

`cosh m x` is the floating point number closest to `cosh x`.

`val tanh : rmode -> 'f float -> 'f float`

`tanh m x` is the floating point number closest to `tanh x`.

`val asinh : rmode -> 'f float -> 'f float`

`asinh m x` is the floating point number closest to `asinh x`.

`val acosh : rmode -> 'f float -> 'f float`

`acosh m x` is the floating point number closest to `acosh x`.

`val atanh : rmode -> 'f float -> 'f float`

`atanh m x` is the floating point number closest to `atanh x`.