package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `LSODA
]
type t = [ `LSODA | `Object ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val create : ?first_step:float -> ?min_step:float -> ?max_step:float -> ?rtol:Py.Object.t -> ?atol:Py.Object.t -> ?jac:Py.Object.t -> ?lband:Py.Object.t -> ?uband:Py.Object.t -> ?vectorized:bool -> ?extraneous:(string * Py.Object.t) list -> fun_:Py.Object.t -> t0:float -> y0:[> `Ndarray ] Np.Obj.t -> t_bound:float -> unit -> t

Adams/BDF method with automatic stiffness detection and switching.

This is a wrapper to the Fortran solver from ODEPACK 1_. It switches automatically between the nonstiff Adams method and the stiff BDF method. The method was originally detailed in 2_.

Parameters ---------- fun : callable Right-hand side of the system. The calling signature is ``fun(t, y)``. Here ``t`` is a scalar, and there are two options for the ndarray ``y``: It can either have shape (n,); then ``fun`` must return array_like with shape (n,). Alternatively it can have shape (n, k); then ``fun`` must return an array_like with shape (n, k), i.e. each column corresponds to a single column in ``y``. The choice between the two options is determined by `vectorized` argument (see below). The vectorized implementation allows a faster approximation of the Jacobian by finite differences (required for this solver). t0 : float Initial time. y0 : array_like, shape (n,) Initial state. t_bound : float Boundary time - the integration won't continue beyond it. It also determines the direction of the integration. first_step : float or None, optional Initial step size. Default is ``None`` which means that the algorithm should choose. min_step : float, optional Minimum allowed step size. Default is 0.0, i.e., the step size is not bounded and determined solely by the solver. max_step : float, optional Maximum allowed step size. Default is np.inf, i.e., the step size is not bounded and determined solely by the solver. rtol, atol : float and array_like, optional Relative and absolute tolerances. The solver keeps the local error estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a relative accuracy (number of correct digits). But if a component of `y` is approximately below `atol`, the error only needs to fall within the same `atol` threshold, and the number of correct digits is not guaranteed. If components of y have different scales, it might be beneficial to set different `atol` values for different components by passing array_like with shape (n,) for `atol`. Default values are 1e-3 for `rtol` and 1e-6 for `atol`. jac : None or callable, optional Jacobian matrix of the right-hand side of the system with respect to ``y``. The Jacobian matrix has shape (n, n) and its element (i, j) is equal to ``d f_i / d y_j``. The function will be called as ``jac(t, y)``. If None (default), the Jacobian will be approximated by finite differences. It is generally recommended to provide the Jacobian rather than relying on a finite-difference approximation. lband, uband : int or None Parameters defining the bandwidth of the Jacobian, i.e., ``jaci, j != 0 only for i - lband <= j <= i + uband``. Setting these requires your jac routine to return the Jacobian in the packed format: the returned array must have ``n`` columns and ``uband + lband + 1`` rows in which Jacobian diagonals are written. Specifically ``jac_packeduband + i - j , j = jaci, j``. The same format is used in `scipy.linalg.solve_banded` (check for an illustration). These parameters can be also used with ``jac=None`` to reduce the number of Jacobian elements estimated by finite differences. vectorized : bool, optional Whether `fun` is implemented in a vectorized fashion. A vectorized implementation offers no advantages for this solver. Default is False.

Attributes ---------- n : int Number of equations. status : string Current status of the solver: 'running', 'finished' or 'failed'. t_bound : float Boundary time. direction : float Integration direction: +1 or -1. t : float Current time. y : ndarray Current state. t_old : float Previous time. None if no steps were made yet. nfev : int Number of evaluations of the right-hand side. njev : int Number of evaluations of the Jacobian.

References ---------- .. 1 A. C. Hindmarsh, 'ODEPACK, A Systematized Collection of ODE Solvers,' IMACS Transactions on Scientific Computation, Vol 1., pp. 55-64, 1983. .. 2 L. Petzold, 'Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations', SIAM Journal on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148, 1983.

val dense_output : [> tag ] Obj.t -> Py.Object.t

Compute a local interpolant over the last successful step.

Returns ------- sol : `DenseOutput` Local interpolant over the last successful step.

val step : [> tag ] Obj.t -> string option

Perform one integration step.

Returns ------- message : string or None Report from the solver. Typically a reason for a failure if `self.status` is 'failed' after the step was taken or None otherwise.

val n : t -> int

Attribute n: get value or raise Not_found if None.

val n_opt : t -> int option

Attribute n: get value as an option.

val status : t -> string

Attribute status: get value or raise Not_found if None.

val status_opt : t -> string option

Attribute status: get value as an option.

val t_bound : t -> float

Attribute t_bound: get value or raise Not_found if None.

val t_bound_opt : t -> float option

Attribute t_bound: get value as an option.

val direction : t -> float

Attribute direction: get value or raise Not_found if None.

val direction_opt : t -> float option

Attribute direction: get value as an option.

val t : t -> float

Attribute t: get value or raise Not_found if None.

val t_opt : t -> float option

Attribute t: get value as an option.

val y : t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Attribute y: get value or raise Not_found if None.

val y_opt : t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t option

Attribute y: get value as an option.

val t_old : t -> float

Attribute t_old: get value or raise Not_found if None.

val t_old_opt : t -> float option

Attribute t_old: get value as an option.

val nfev : t -> int

Attribute nfev: get value or raise Not_found if None.

val nfev_opt : t -> int option

Attribute nfev: get value as an option.

val njev : t -> int

Attribute njev: get value or raise Not_found if None.

val njev_opt : t -> int option

Attribute njev: get value as an option.

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Stdlib.Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.