sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
On This Page
This module defines the structure and interfaces for a Neural IntermediatE Representation (NIER).
It is primarly designed as an intermediate state into producing verifiable terms from an ONNX model.
Tensors are multidimensional arrays used to represent numerical such as a neural network weight
module Tensor : sig ... end
module Node : sig ... end
module type VInput = sig ... end
module MakeVertex (I : VInput) : sig ... end
module Edge : sig ... end
NIER is a graph (V,E) where V is the set of vertices (nodes) and E is the set of edges (connections between nodes). Nodes contains the following informations:
Note that tensor have their own shape; they must be equal to the NIER's node shape however.
module NierCFGFloat : sig ... end
val print_cfg_graph : NierCFGFloat.t -> Base.unit
val out_cfg_graph : NierCFGFloat.t -> Base.unit