package goblint

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

Parameters

module HM : Goblint_lib.Prelude.Hashtbl.S with type key = S.v

Signature

include sig ... end
module GU = Goblintutil
val stack_d : int Prelude.ref
val full_trace : bool
val start_c : int
val max_c : int Prelude.ref
val max_var : S.Var.t option Prelude.ref
val histo : int HM.t
val increase : S.Var.t -> unit
val start_event : unit -> unit
val stop_event : unit -> unit
val new_var_event : S.Var.t -> unit
val get_var_event : S.Var.t -> unit
val eval_rhs_event : S.Var.t -> unit
val update_var_event : S.Var.t -> S.Dom.t -> S.Dom.t -> unit
val print_solver_stats : (unit -> unit) Prelude.ref
val ncontexts : int Prelude.ref
val print_context_stats : 'a HM.t -> unit
val stats_csv : unit BatIO.output option
val write_csv : string list -> unit BatIO.output -> unit
val print_stats : 'a -> unit
module VS : sig ... end
type solver_data = {
  1. mutable st : (S.Var.t * S.Dom.t) list;
  2. mutable infl : VS.t HM.t;
  3. mutable sides : VS.t HM.t;
  4. mutable rho : S.Dom.t HM.t;
  5. mutable wpoint : unit HM.t;
  6. mutable stable : unit HM.t;
  7. mutable side_dep : VS.t HM.t;
    (*

    Dependencies of side-effected variables. Knowing these allows restarting them and re-triggering all side effects.

    *)
  8. mutable side_infl : VS.t HM.t;
    (*

    Influences to side-effected variables. Not normally in infl, but used for restarting them.

    *)
  9. mutable var_messages : Messages.Message.t HM.t;
    (*

    Messages from right-hand sides of variables. Used for incremental postsolving.

    *)
  10. mutable rho_write : S.Dom.t HM.t HM.t;
    (*

    Side effects from variables to write-only variables with values. Used for fast incremental restarting of write-only variables.

    *)
  11. mutable dep : VS.t HM.t;
    (*

    Dependencies of variables. Inverse of infl. Used for fast pre-reachable pruning in incremental postsolving.

    *)
}
type marshal = solver_data
val create_empty_data : unit -> solver_data
val print_data : solver_data -> string -> unit
val verify_data : solver_data -> unit
val exists_key : (HM.key -> bool) -> 'a HM.t -> bool
module P : sig ... end
module HPM : sig ... end
type phase =
  1. | Widen
  2. | Narrow
val pp_phase : Ppx_deriving_runtime.Format.formatter -> phase -> Ppx_deriving_runtime.unit
val show_phase : phase -> Ppx_deriving_runtime.string
module CurrentVarS : sig ... end
module S = CurrentVarS.S
val solve : (S.Var.t -> S.Dom.t -> S.Dom.t -> S.Dom.t) -> (S.Var.t * S.Dom.t) list -> S.Var.t list -> S.Dom.t HM.t * solver_data
OCaml

Innovation. Community. Security.