# package monomorphic

Legend:
Library
Module
Module type
Parameter
Class
Class type

Complex numbers.

This module provides arithmetic operations on complex numbers. Complex numbers are represented by their real and imaginary parts (cartesian representation). Each part is represented by a double-precision floating-point number (type `float`).

`type t = {`
1. `re : float;`
2. `im : float;`
`}`

The type of complex numbers. `re` is the real part and `im` the imaginary part.

`val zero : t`

The complex number `0`.

`val one : t`

The complex number `1`.

`val i : t`

The complex number `i`.

`val neg : t -> t`

Unary negation.

`val conj : t -> t`

Conjugate: given the complex `x + i.y`, returns `x - i.y`.

`val add : t -> t -> t`

`val sub : t -> t -> t`

Subtraction

`val mul : t -> t -> t`

Multiplication

`val inv : t -> t`

Multiplicative inverse (`1/z`).

`val div : t -> t -> t`

Division

`val sqrt : t -> t`

Square root. The result `x + i.y` is such that `x > 0` or `x = 0` and `y >= 0`. This function has a discontinuity along the negative real axis.

`val norm2 : t -> float`

Norm squared: given `x + i.y`, returns `x^2 + y^2`.

`val norm : t -> float`

Norm: given `x + i.y`, returns `sqrt(x^2 + y^2)`.

`val arg : t -> float`

Argument. The argument of a complex number is the angle in the complex plane between the positive real axis and a line passing through zero and the number. This angle ranges from `-pi` to `pi`. This function has a discontinuity along the negative real axis.

`val polar : float -> float -> t`

`polar norm arg` returns the complex having norm `norm` and argument `arg`.

`val exp : t -> t`

Exponentiation. `exp z` returns `e` to the `z` power.

`val log : t -> t`

Natural logarithm (in base `e`).

`val pow : t -> t -> t`

Power function. `pow z1 z2` returns `z1` to the `z2` power.