package core_kernel

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

String type based on Bigarray, for use in I/O and C-bindings

Types and exceptions
include sig ... end
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (Base.Int.t -> t) Bin_prot.Read.reader
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_shape_t : Bin_prot.Shape.t
val compare : t -> t -> Base.Int.t
val t_of_sexp : Sexplib.Sexp.t -> t
val sexp_of_t : t -> Sexplib.Sexp.t
type t_frozen = t

Type of bigstrings which support hashing. Note that mutation invalidates previous hashes.

include sig ... end
val bin_t_frozen : t_frozen Bin_prot.Type_class.t
val bin_read_t_frozen : t_frozen Bin_prot.Read.reader
val __bin_read_t_frozen__ : (Base.Int.t -> t_frozen) Bin_prot.Read.reader
val bin_reader_t_frozen : t_frozen Bin_prot.Type_class.reader
val bin_size_t_frozen : t_frozen Bin_prot.Size.sizer
val bin_write_t_frozen : t_frozen Bin_prot.Write.writer
val bin_writer_t_frozen : t_frozen Bin_prot.Type_class.writer
val bin_shape_t_frozen : Bin_prot.Shape.t
val compare_t_frozen : t_frozen -> t_frozen -> Base.Int.t
val t_frozen_of_sexp : Sexplib.Sexp.t -> t_frozen
val sexp_of_t_frozen : t_frozen -> Sexplib.Sexp.t
include Base.Equal.S with type t := t
val equal : t Base.Equal.equal
include Hexdump.S with type t := t
module Hexdump : sig ... end
Creation and string conversion
val create : ?max_mem_waiting_gc:Byte_units.t -> Base.Int.t -> t

create length

  • parameter max_mem_waiting_gc

    default = 256 M in OCaml <= 3.12, 1 G otherwise. As the total allocation of calls to create approach max_mem_waiting_gc, the pressure in the garbage collector to be more agressive will increase.

  • returns

    a new bigstring having length. Content is undefined.

val init : Base.Int.t -> f:(Base.Int.t -> Base.Char.t) -> t

init n ~f creates a bigstring t of length n, with t.{i} = f i

val of_string : ?pos:Base.Int.t -> ?len:Base.Int.t -> Base.String.t -> t

of_string ?pos ?len str

  • returns

    a new bigstring that is equivalent to the substring of length len in str starting at position pos.

  • parameter pos

    default = 0

  • parameter len

    default = String.length str - pos

val to_string : ?pos:Base.Int.t -> ?len:Base.Int.t -> t -> Base.String.t

to_string ?pos ?len bstr

  • returns

    a new string that is equivalent to the substring of length len in bstr starting at position pos.

  • parameter pos

    default = 0

  • parameter len

    default = length bstr - pos

  • raises Invalid_argument

    if the string would exceed runtime limits.

val concat : ?sep:t -> t Base.List.t -> t

concat ?sep list returns the concatenation of list with sep in between each.

Checking
val check_args : loc:Base.String.t -> pos:Base.Int.t -> len:Base.Int.t -> t -> Base.Unit.t

check_args ~loc ~pos ~len bstr checks the position and length arguments pos and len for bigstrings bstr.

  • raises

    Invalid_argument if these arguments are illegal for the given bigstring using loc to indicate the calling context.

val get_opt_len : t -> pos:Base.Int.t -> Base.Int.t Base.Option.t -> Base.Int.t

get_opt_len bstr ~pos opt_len

  • returns

    the length of a subbigstring in bstr starting at position pos and given optional length opt_len. This function does not check the validity of its arguments. Use check_args for that purpose.

Accessors
val length : t -> Base.Int.t

length bstr

  • returns

    the length of bigstring bstr.

val sub_shared : ?pos:Base.Int.t -> ?len:Base.Int.t -> t -> t

sub_shared ?pos ?len bstr

  • returns

    the sub-bigstring in bstr that starts at position pos and has length len. The sub-bigstring shares the same memory region, i.e. modifying it will modify the original bigstring. Holding on to the sub-bigstring will also keep the (usually bigger) original one around.

  • parameter pos

    default = 0

  • parameter len

    default = Bigstring.length bstr - pos

val get : t -> Base.Int.t -> Base.Char.t

get t pos returns the character at pos

val set : t -> Base.Int.t -> Base.Char.t -> Base.Unit.t

set t pos sets the character at pos

val is_mmapped : t -> Base.Bool.t

is_mmapped bstr

  • returns

    whether the bigstring bstr is memory-mapped.

Blitting

blit ~src ?src_pos ?src_len ~dst ?dst_pos () blits src_len characters from src starting at position src_pos to dst at position dst_pos.

  • raises Invalid_argument

    if the designated ranges are out of bounds.

include Blit.S with type t := t
val blit : (t, t) Base.Blit_intf.blit
val blito : (t, t) Base.Blit_intf.blito
val unsafe_blit : (t, t) Base.Blit_intf.blit
val sub : (t, t) Base.Blit_intf.sub
val subo : (t, t) Base.Blit_intf.subo
module To_string : sig ... end
module From_string : sig ... end
Reading/writing bin-prot

These functions write the "size-prefixed" bin-prot format that is used by, e.g., async's Writer.write_bin_prot, Reader.read_bin_prot and Unpack_buffer.Unpack_one.create_bin_prot.

val write_bin_prot : t -> ?pos:Base.Int.t -> 'a Bin_prot.Type_class.writer -> 'a -> Base.Int.t

write_bin_prot t writer a writes a to t starting at pos, and returns the index in t immediately after the last byte written. It raises if pos < 0 or if a doesn't fit in t.

val read_bin_prot : t -> ?pos:Base.Int.t -> ?len:Base.Int.t -> 'a Bin_prot.Type_class.reader -> ('a * Base.Int.t) Or_error.t

The read_bin_prot* functions read from the region of t starting at pos of length len. They return the index in t immediately after the last byte read. They raise if pos and len don't describe a region of t.

val read_bin_prot_verbose_errors : t -> ?pos:Base.Int.t -> ?len:Base.Int.t -> 'a Bin_prot.Type_class.reader -> [ `Invalid_data of Error.t | `Not_enough_data | `Ok of 'a * Base.Int.t ]
Memory mapping
val map_file : shared:Base.Bool.t -> Unix.file_descr -> Base.Int.t -> t

map_file shared fd n memory-maps n characters of the data associated with descriptor fd to a bigstring. Iff shared is true, all changes to the bigstring will be reflected in the file.

Users must keep in mind that operations on the resulting bigstring may result in disk operations which block the runtime. This is true for pure OCaml operations (such as t.

<- 1), and for calls to blit. While some I/O operations may release the OCaml lock, users should not expect this to be done for all operations on a bigstring returned from map_file.

val find : ?pos:Base.Int.t -> ?len:Base.Int.t -> Base.Char.t -> t -> Base.Int.t Base.Option.t

find ?pos ?len char t returns Some i for the smallest i >= pos such that t.{i} = char, or None if there is no such i.

  • parameter pos

    default = 0

  • parameter len

    default = length bstr - pos

val unsafe_find : t -> Base.Char.t -> pos:Base.Int.t -> len:Base.Int.t -> Base.Int.t

Same as find, but does no bounds checking, and returns a negative value instead of None if char is not found.

Destruction
val unsafe_destroy : t -> Base.Unit.t

unsafe_destroy bstr destroys the bigstring by deallocating its associated data or, if memory-mapped, unmapping the corresponding file, and setting all dimensions to zero. This effectively frees the associated memory or address-space resources instantaneously. This feature helps working around a bug in the current OCaml runtime, which does not correctly estimate how aggressively to reclaim such resources.

This operation is safe unless you have passed the bigstring to another thread that is performing operations on it at the same time. Access to the bigstring after this operation will yield array bounds exceptions.

  • raises Failure

    if the bigstring has already been deallocated (or deemed "external", which is treated equivalently), or if it has proxies, i.e. other bigstrings referring to the same data.

Accessors for parsing binary values, analogous to binary_packing. These are in Bigstring rather than a separate module because:

1) Existing binary_packing requires copies and does not work with bigstrings 2) The accessors rely on the implementation of bigstring, and hence should changeshould the implementation of bigstring move away from Bigarray. 3) Bigstring already has some external C functions, so it didn't require many changes to the OMakefile ^_^.

In a departure from Binary_packing, the naming conventions are chosen to be close to C99 stdint types, as it's a more standard description and it is somewhat useful in making compact macros for the implementations. The accessor names contain endian-ness to allow for branch-free implementations

<accessor> ::= <unsafe><operation><type><endian><int> <unsafe> ::= unsafe_ | '' <operation> ::= get_ | set_ <type> ::= int16 | uint16 | int32 | int64 <endian> ::= _le | _be | '' <int> ::= _int | ''

The "unsafe_" prefix indicates that these functions do no bounds checking. Performance testing demonstrated that the bounds check was 2-3 times slower due to the fact that Bigstring.length is a C call, and not even a noalloc one. In practice, message parsers can check the size of an outer message once, and use the unsafe accessors for individual fields, so many bounds checks can end up being redundant as well. The situation could be improved by having bigarray cache the length/dimensions.

val unsafe_get_int8 : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_int8 : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_uint8 : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_uint8 : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_int16_le : t -> pos:Base.Int.t -> Base.Int.t

16 bit methods

val unsafe_get_int16_be : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_int16_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_int16_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_uint16_le : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_uint16_be : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_uint16_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_uint16_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_int32_le : t -> pos:Base.Int.t -> Base.Int.t

32 bit methods

val unsafe_get_int32_be : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_int32_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_int32_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_uint32_le : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_uint32_be : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_uint32_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_uint32_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t

Similar to the usage in binary_packing, the below methods are treating the value being read (or written), as an ocaml immediate integer, as such it is actually 63 bits. If the user is confident that the range of values used in practice will not require 64 bit precision (i.e. Less than Max_Long), then we can avoid allocation and use an immediate. If the user is wrong, an exception will be thrown (for get).

val unsafe_get_int64_le_exn : t -> pos:Base.Int.t -> Base.Int.t

64-bit signed values

val unsafe_get_int64_be_exn : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_int64_le_trunc : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_int64_be_trunc : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_int64_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_int64_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_uint64_be_exn : t -> pos:Base.Int.t -> Base.Int.t

64-bit unsigned values

val unsafe_get_uint64_le_exn : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_uint64_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_uint64_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_int32_t_le : t -> pos:Base.Int.t -> Int32.t

32-bit methods w/ full precision

val unsafe_get_int32_t_be : t -> pos:Base.Int.t -> Int32.t
val unsafe_set_int32_t_le : t -> pos:Base.Int.t -> Int32.t -> Base.Unit.t
val unsafe_set_int32_t_be : t -> pos:Base.Int.t -> Int32.t -> Base.Unit.t
val unsafe_get_int64_t_le : t -> pos:Base.Int.t -> Int64.t

64-bit methods w/ full precision

val unsafe_get_int64_t_be : t -> pos:Base.Int.t -> Int64.t
val unsafe_set_int64_t_le : t -> pos:Base.Int.t -> Int64.t -> Base.Unit.t
val unsafe_set_int64_t_be : t -> pos:Base.Int.t -> Int64.t -> Base.Unit.t
val get_tail_padded_fixed_string : padding:Base.Char.t -> t -> pos:Base.Int.t -> len:Base.Int.t -> Base.Unit.t -> Base.String.t

similar to Binary_packing.unpack_tail_padded_fixed_string and .pack_tail_padded_fixed_string.

val set_tail_padded_fixed_string : padding:Base.Char.t -> t -> pos:Base.Int.t -> len:Base.Int.t -> Base.String.t -> Base.Unit.t
val get_head_padded_fixed_string : padding:Base.Char.t -> t -> pos:Base.Int.t -> len:Base.Int.t -> Base.Unit.t -> Base.String.t
val set_head_padded_fixed_string : padding:Base.Char.t -> t -> pos:Base.Int.t -> len:Base.Int.t -> Base.String.t -> Base.Unit.t
OCaml

Innovation. Community. Security.