package core

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

Module for simple closed intervals over arbitrary types that are ordered correctly using polymorphic compare.

module type S1 = Interval.S1

Sexps are () for empty interval and (3 5) for an interval containing 3, 4, and 5.

include S1
type 'a t
type 'a bound_ = 'a

Module for simple closed intervals over arbitrary types that are ordered correctly using polymorphic compare.

val create : 'a bound_ -> 'a bound_ -> 'a t

create l u returns the interval with lower bound l and upper bound u, unless l > u, in which case create returns the empty interval.

val empty : 'a t
val intersect : 'a t -> 'a t -> 'a t
val is_empty : 'a t -> bool
val is_empty_or_singleton : 'a t -> bool
val bounds : 'a t -> ('a bound_ * 'a bound_) option
val lbound : 'a t -> 'a bound_ option
val ubound : 'a t -> 'a bound_ option
val bounds_exn : 'a t -> 'a bound_ * 'a bound_
val lbound_exn : 'a t -> 'a bound_
val ubound_exn : 'a t -> 'a bound_
val convex_hull : 'a t list -> 'a t

convex_hull ts returns an interval whose upper bound is the greatest upper bound of the intervals in the list, and whose lower bound is the least lower bound of the list.

val contains : 'a t -> 'a bound_ -> bool
val compare_value : 'a t -> 'a bound_ -> [ `Below | `Within | `Above | `Interval_is_empty ]
val bound : 'a t -> 'a bound_ -> 'a bound_ option

bound t x returns None iff is_empty t. If bounds t = Some (a, b), then bound returns Some y where y is the element of t closest to x. I.e.:

| y = a if x < a | y = x if a <= x <= b | y = b if x > b

val is_superset : 'a t -> of_:'a t -> bool

is_superset i1 of_:i2 is whether i1 contains i2. The empty interval is contained in every interval.

val is_subset : 'a t -> of_:'a t -> bool
val map : 'a t -> f:('a bound_ -> 'b bound_) -> 'b t

map t ~f returns create (f l) (f u) if bounds t = Some (l, u), and empty if t is empty. Note that if f l > f u, the result of map is empty, by the definition of create.

If one thinks of an interval as a set of points, rather than a pair of its bounds, then map is not the same as the usual mathematical notion of mapping f over that set. For example, ~f:(fun x -> x * x) maps the interval

[-1,1]

to

[1,1]

, not to

[0,1]

.

val are_disjoint : 'a t list -> bool

are_disjoint ts returns true iff the intervals in ts are pairwise disjoint.

val are_disjoint_as_open_intervals : 'a t list -> bool

Returns true iff a given set of intervals would be disjoint if considered as open intervals. i.e., (3,4) and (4,5) would count as disjoint.

val list_intersect : 'a t list -> 'a t list -> 'a t list

Assuming that ilist1 and ilist2 are lists of (disjoint) intervals, list_intersect ilist1 ilist2 returns the list of disjoint intervals that correspond to the intersection of ilist1 with ilist2.

val half_open_intervals_are_a_partition : 'a t list -> bool

Returns true if the intervals, when considered as half-open-intervals, nestle up cleanly one to the next. i.e., if you sort the intervals by the lower bound, then the upper bound of the nth interval is equal to the lower bound of the n+1th interval. The intervals do not need to partition the entire space, they just need to partition their union.

module Set : sig ... end
module type S = Interval.S
module type S_time = Interval.S_time
module Make (Bound : sig ... end) : sig ... end
module Float : sig ... end
module Int : sig ... end
module Ofday : sig ... end
module Ofday_ns : sig ... end
module Time : sig ... end
module Time_ns : sig ... end
module Stable : sig ... end
OCaml

Innovation. Community. Security.