package core

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
include sig ... end
val typerep_of_t : t Typerep_lib.Std.Typerep.t
val typename_of_t : t Typerep_lib.Std.Typename.t
include Core_kernel.Identifiable with type t := t
include sig ... end
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (Base.Int.t -> t) Bin_prot.Read.reader
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_shape_t : Bin_prot.Shape.t
val t_of_sexp : Sexplib.Sexp.t -> t
val sexp_of_t : t -> Sexplib.Sexp.t
include Base.Stringable.S with type t := t
val of_string : string -> t
val to_string : t -> string
include Core_kernel.Comparable.S_binable with type t := t
include Base.Comparable_intf.S with type t := t
include Base.Comparable_intf.Polymorphic_compare with type t := t
include Base.Polymorphic_compare_intf.Infix with type t := t
val (>=) : t -> t -> bool
val (<=) : t -> t -> bool
val (=) : t -> t -> bool
val (>) : t -> t -> bool
val (<) : t -> t -> bool
val (<>) : t -> t -> bool
val equal : t -> t -> bool
val compare : t -> t -> int

-1 means "less than", 0 means "equal", 1 means "greater than", and other values should not be returned

val min : t -> t -> t
val max : t -> t -> t
val ascending : t -> t -> int

ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~cmp:ascending and List.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.

val descending : t -> t -> int
val between : t -> low:t -> high:t -> bool
val clamp_exn : t -> min:t -> max:t -> t

clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.

Raises if not (min <= max).

val clamp : t -> min:t -> max:t -> t Base.Or_error.t
include Base.Comparator.S with type t := t
type comparator_witness
include Base.Comparable_intf.Validate with type t := t
val validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.check
include Base.Pretty_printer.S with type t := t
val pp : Base__.Import.Caml.Format.formatter -> t -> unit
include Core_kernel.Comparable.With_zero with type t := t
val validate_positive : t Base.Validate.check
val validate_non_negative : t Base.Validate.check
val validate_negative : t Base.Validate.check
val validate_non_positive : t Base.Validate.check
val is_positive : t -> bool
val is_non_negative : t -> bool
val is_negative : t -> bool
val is_non_positive : t -> bool
val sign : t -> Base__.Sign0.t

Returns Neg, Zero, or Pos in a way consistent with the above functions.

module Parts : sig ... end

Similar to Time.Span.Parts, but adding ns.

val nanosecond : t
val microsecond : t
val millisecond : t
val second : t
val minute : t
val hour : t
val day : t
val of_ns : float -> t
val of_us : float -> t
val of_ms : float -> t
val of_sec : float -> t
val of_min : float -> t
val of_hr : float -> t
val of_day : float -> t
val to_ns : t -> float
val to_us : t -> float
val to_ms : t -> float
val to_sec : t -> float
val to_min : t -> float
val to_hr : t -> float
val to_day : t -> float
val of_int_us : int -> t
val of_int_ms : int -> t
val of_int_sec : int -> t
val to_int_us : t -> int
val to_int_ms : t -> int
val to_int_sec : t -> int
val zero : t
val min_value : t
val max_value : t
val (+) : t -> t -> t

overflows silently

val (-) : t -> t -> t

overflows silently

val abs : t -> t
val neg : t -> t
val scale : t -> float -> t
val scale_int : t -> int -> t

overflows silently

val div : t -> t -> Core_kernel.Int63.t
val (/) : t -> float -> t
val (//) : t -> t -> float
val create : ?sign:Core_kernel.Sign.t -> ?day:int -> ?hr:int -> ?min:int -> ?sec:int -> ?ms:int -> ?us:int -> ?ns:int -> unit -> t

Overflows silently.

val to_short_string : t -> string
val randomize : t -> percent:float -> t
val to_parts : t -> Parts.t
val of_parts : Parts.t -> t

overflows silently

val to_unit_of_time : t -> Core_kernel.Unit_of_time.t
val of_unit_of_time : Core_kernel.Unit_of_time.t -> t
val to_string_hum : ?delimiter:char -> ?decimals:int -> ?align_decimal:bool -> ?unit_of_time:Core_kernel.Unit_of_time.t -> t -> string

See Time.Span.to_string_hum.

Time.t is precise to approximately 0.24us in 2014. If to_span converts to the closest Time.Span.t, we have stability problems: converting back yields a different t, sometimes different enough to have a different external representation, because the conversion back and forth crosses a rounding boundary.

To stabilize conversion, we treat Time.t as having 1us precision: to_span and of_span both round to the nearest 1us.

Around 135y magnitudes, Time.Span.t no longer has 1us resolution. At that point, to_span and of_span raise.

The concern with stability is in part due to an earlier incarnation of Timing_wheel that had surprising behavior due to rounding of floating-point times. Timing_wheel was since re-implemented to use integer Time_ns, and to treat floating-point Times as equivalence classes according to the Time_ns that they round to. See Timing_wheel_float for details.

include Core_kernel.Robustly_comparable with type t := t
val (>=.) : t -> t -> bool
val (<=.) : t -> t -> bool
val (=.) : t -> t -> bool
val (>.) : t -> t -> bool
val (<.) : t -> t -> bool
val (<>.) : t -> t -> bool
val robustly_compare : t -> t -> int
val to_int63_ns : t -> Core_kernel.Int63.t

Fast, implemented as the identity function.

val of_int63_ns : Core_kernel.Int63.t -> t

Somewhat fast, implemented as a range check.

val to_int_ns : t -> int

Will raise on 32-bit platforms with spans corresponding to contemporary now. Consider to_int63_ns instead.

val of_int_ns : int -> t
val to_proportional_float : t -> float

The only condition to_proportional_float is supposed to satisfy is that for all t1, t2 : t: to_proportional_float t1 /. to_proportional_float t2 = t1 // t2.

module Stable : sig ... end
val random : ?state:Core_kernel.Random.State.t -> unit -> t
module Option : sig ... end

Span.Option.t is like Span.t option, except that the value is immediate. This module should mainly be used to avoid allocations.

OCaml

Innovation. Community. Security.